1,858 research outputs found

    Law and Literature: The Contemporary Image of the Lawyer

    Get PDF

    Law and Literature: The Contemporary Image of the Lawyer

    Get PDF

    On the stability and spectral radius of a finite set of matrices

    Full text link
    This paper studies some problems related to the stability and the spectral radius of a finite set of matrices. A seasonal epidemic model is given to illustrate the use of the obtained results. In this example, the relationship between the obtained results and the stability of a discrete time periodic linear system is obtained.This work has been partially supported by Spanish [grant number MTM2013-43678-P].Cantó Colomina, B.; Coll, C.; Sánchez, E. (2016). On the stability and spectral radius of a finite set of matrices. Linear and Multilinear Algebra. 64(3):353-361. https://doi.org/10.1080/03081087.2015.1040404S35336164

    Near-Infrared Spectroscopy of McNeil's Nebula Object

    Full text link
    We present 0.8-5.2 micron spectroscopy of the compact source at the base of a variable nebula (McNeil's Nebula Object) in the Lynds 1630 dark cloud that went into outburst in late 2003. The spectrum of this object reveals an extremely red continuum, CO bands at 2.3-2.5 microns in emission, a deep 3.0 micron ice absorption feature, and a solid state CO absorption feature at 4.7 microns. In addition, emission lines of H, Ca II, Mg I, and Na I are present. The Paschen lines exhibit P Cygni profiles, as do two lines of He I, although the emission features are very weak in the latter. The Brackett lines, however, are seen to be purely in emission. The P Cygni profiles clearly indicate that mass outflow is occurring in a wind with a velocity of ~400 km/s. The H line ratios do not yield consistent estimates of the reddening, nor do they agree with the extinction estimated from the ice feature (A_V ~ 11). We propose that these lines are optically thick and are produced in a dense, ionized wind. The near-infrared spectrum does not appear similar to any known FUor or EXor object. However, all evidence suggests that McNeil's Nebula Object is a heavily-embedded low-mass Class I protostar, surrounded by a disk, whose brightening is due to a recent accretion event.Comment: 11 pages, 2 ps figures, accepted for publication in ApJ Letter

    Spider fauna of semiarid eastern colorado agroecosystems: Diversity, abundance, and effects of crop intensification

    Get PDF
    Spiders are critical predators in agroecosystems. Crop management practices can influence predator density and diversity, which, in turn, can influence pest management strategies. Crop intensification is a sustainable agricultural technique that can enhance crop production although optimizing soil moisture. To date, there is no information on how crop intensification affects natural enemy populations, particularly spiders. This study had two objectives: to characterize the abundance and diversity of spiders in eastern Colorado agroecosystems, and to test the hypothesis that spider diversity and density would be higher in wheat (Triticum aestivum L.) in crop-intensified rotations compared with wheat in conventional rotations. We collected spiders through pitfall, vacuum, and lookdown sampling from 2002 to 2007 to test these objectives. Over 11,000 spiders in 19 families from 119 species were captured from all sampling techniques. Interestingly, the hunting spider guild represented 89% of the spider fauna captured from all sites with the families Gnaphosidae and Lycosidae representing 75% of these spiders. Compared with European agroecosystems, these agroecosystems had greater diversity, which can be beneficial for the biological control of pests. Overall, spider densities were low in these semiarid cropping systems, and crop intensification effects on spider densities were not evident at this scale. © 2013 Entomological Society of America

    Grounding Bohmian Mechanics in Weak Values and Bayesianism

    Full text link
    Bohmian mechanics (BM) is a popular interpretation of quantum mechanics in which particles have real positions. The velocity of a point x in configuration space is defined as the standard probability current j(x) divided by the probability density P(x). However, this ``standard'' j is in fact only one of infinitely many that transform correctly and satisfy \dot P + \del . j=0. In this article I show that there is a unique j that can be determined experimentally as a weak value using techniques that would make sense to a classical physicist. Moreover, this operationally defined j equals the standard j, so, assuming \dot x = j/P, the possible Bohmian paths can also be determined experimentally from a large enough ensemble. Furthermore, this approach to deriving BM singles out x as the hidden variable, because (for example) the operationally defined momentum current is in general incompatible with the evolution of the momentum distribution. Finally I discuss how, in this setting, the usual quantum probabilities can be derived from a Bayesian standpoint, via the principle of indifference.Comment: 11 page

    CLOUDS search for variability in brown dwarf atmospheres

    Get PDF
    Context: L-type ultra-cool dwarfs and brown dwarfs have cloudy atmospheres that could host weather-like phenomena. The detection of photometric or spectral variability would provide insight into unresolved atmospheric heterogeneities, such as holes in a global cloud deck. Aims: It has been proposed that growth of heterogeneities in the global cloud deck may account for the L- to T-type transition as brown dwarf photospheres evolve from cloudy to clear conditions. Such a mechanism is compatible with variability. We searched for variability in the spectra of five L6 to T6 brown dwarfs in order to test this hypothesis. Methods: We obtained spectroscopic time series using VLT/ISAAC, over 0.99-1.13um, and IRTF/SpeX for two of our targets, in J, H and K bands. We search for statistically variable lines and correlation between those. Results: High spectral-frequency variations are seen in some objects, but these detections are marginal and need to be confirmed. We find no evidence for large amplitude variations in spectral morphology and we place firm upper limits of 2 to 3% on broad-band variability, on the time scale of a few hours. The T2 transition brown dwarf SDSS J1254-0122 shows numerous variable features, but a secure variability diagnosis would require further observations. Conclusions: Assuming that any variability arises from the rotation of patterns of large-scale clear and cloudy regions across the surface, we find that the typical physical scale of cloud cover disruption should be smaller than 5-8% of the disk area for four of our targets. The possible variations seen in SDSS J1254-0122 are not strong enough to allow us to confirm the cloud breaking hypothesis.Comment: 17 pages, 14 figures, accepted by A&

    Characterizing Young Brown Dwarfs using Low Resolution Near-IR Spectra

    Get PDF
    We present near-infrared (1.0-2.4 micron) spectra confirming the youth and cool effective temperatures of 6 brown dwarfs and low mass stars with circumstellar disks toward the Chamaeleon II and Ophiuchus star forming regions. The spectrum of one of our objects indicates that it has a spectral type of ~L1, making it one of the latest spectral type young brown dwarfs identified to date. Comparing spectra of young brown dwarfs, field dwarfs, and giant stars, we define a 1.49-1.56 micron H2O index capable of determining spectral type to within 1 sub-type, independent of gravity. We have also defined an index based on the 1.14 micron sodium feature that is sensitive to gravity, but only weakly dependent on spectral type for field dwarfs. Our 1.14 micron Na index can be used to distinguish young cluster members (t <~ 5 Myr) from young field dwarfs, both of which may have the triangular H-band continuum shape which persists for at least tens of Myr. Using effective temperatures determined from the spectral types of our objects along with luminosities derived from near and mid-infrared photometry, we place our objects on the H-R diagram and overlay evolutionary models to estimate the masses and ages of our young sources. Three of our sources have inferred ages (t ~= 10-30 Myr) significantly older than the median stellar age of their parent clouds (1-3 Myr). For these three objects, we derive masses ~3 times greater than expected for 1-3 Myr old brown dwarfs with the bolometric luminosities of our sources. The large discrepancies in the inferred masses and ages determined using two separate, yet reasonable methods, emphasize the need for caution when deriving or exploiting brown dwarf mass and age estimates.Comment: 11 pages, Accepted to Ap

    On Locality in Quantum General Relativity and Quantum Gravity

    Get PDF
    The physical concept of locality is first analyzed in the special relativistic quantum regime, and compared with that of microcausality and the local commutativity of quantum fields. Its extrapolation to quantum general relativity on quantum bundles over curved spacetime is then described. It is shown that the resulting formulation of quantum-geometric locality based on the concept of local quantum frame incorporating a fundamental length embodies the key geometric and topological aspects of this concept. Taken in conjunction with the strong equivalence principle and the path-integral formulation of quantum propagation, quantum-geometric locality leads in a natural manner to the formulation of quantum-geometric propagation in curved spacetime. Its extrapolation to geometric quantum gravity formulated over quantum spacetime is described and analyzed.Comment: Mac-Word file translated to postscript for submission. The author may be reached at: [email protected] To appear in Found. Phys. vol. 27, 199
    corecore